
 Geometry of the N = 2 supersymmetric sigma model with Euclidean worldsheet

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

JHEP07(2009)078

(http://iopscience.iop.org/1126-6708/2009/07/078)

Download details:

IP Address: 80.92.225.132

The article was downloaded on 03/04/2010 at 09:09

Please note that terms and conditions apply.

The Table of Contents and more related content is available

Home Search Collections Journals About Contact us My IOPscience

http://www.iop.org/Terms_&_Conditions
http://iopscience.iop.org/1126-6708/2009/07
http://iopscience.iop.org/1126-6708/2009/07/078/related
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J
H
E
P
0
7
(
2
0
0
9
)
0
7
8

Published by IOP Publishing for SISSA

Received: June 18, 2009

Accepted: July 6, 2009

Published: July 21, 2009

Geometry of the N = 2 supersymmetric sigma model

with Euclidean worldsheet

C.M. Hull,b U. Lindström,a L. Melo dos Santos,a,b R. von Ungec and M. Zabzinea

aDepartment of Physics and Astronomy, Uppsala University,

Box 516, SE-75120 Uppsala, Sweden
bThe Blackett Laboratory, Imperial College,

Prince Consort Road, London SW7 2AZ, U.K.
cInstitute for Theoretical Physics, Masaryk University,

61137 Brno, Czech Republic

E-mail: c.hull@imperial.ac.uk, Ulf.Lindstrom@fysast.uu.se,

luis.melo-dos-santos04@imperial.ac.uk, unge@physics.muni.cz,

Maxim.Zabzine@fysast.uu.se

Abstract: We investigate the target space geometry of supersymmetric sigma models in

two dimensions with Euclidean signature, and the conditions for N = 2 supersymmetry.

For a real action, the geometry for the N = 2 model is not the generalized Kähler geometry

that arises for Lorentzian signature, but is an interesting modification of this which is not

a complex geometry.

Keywords: Extended Supersymmetry, Differential and Algebraic Geometry, Sigma Models

ArXiv ePrint: 0906.2741

c© SISSA 2009 doi:10.1088/1126-6708/2009/07/078

mailto:c.hull@imperial.ac.uk
mailto:Ulf.Lindstrom@fysast.uu.se
mailto:luis.melo-dos-santos04@imperial.ac.uk
mailto:unge@physics.muni.cz
mailto:Maxim.Zabzine@fysast.uu.se
http://arxiv.org/abs/0906.2741
http://dx.doi.org/10.1088/1126-6708/2009/07/078


J
H
E
P
0
7
(
2
0
0
9
)
0
7
8

Contents

1 Introduction 1

2 Sigma models 2

3 Geometry of the classical models 3

3.1 The Lorentzian N = 2 model 3

3.2 The Wick rotated N = 2 model 4

3.3 The Euclidean N = 2 model with real action 5

3.4 Off-shell closure and f-structures 6

3.5 The Euclidean N = 2 model with real action in N = 2 superspace 8

4 Conclusions 10

1 Introduction

In this paper we discuss N = 2 supersymmetric sigma models in 2 dimensions with Eu-

clidean signature. One such model arises when the usual Lorentzian signature N = 1 model

is Wick-rotated and then required to have additional non-manifest supersymmetries. In

this case, the Wess-Zumino term is imaginary and the action complex. This model was

studied in connection with topological theories in [5]. Below we briefly discuss the target

space geometry in this case. The R-symmetry group is SO(2) × SO(1, 1) [4, 5] allowing

an A-twist in which the SO(2) factor is twisted with the 2d rotation group SO(2) but

not a B-twist. In [5] we considered the complexification of this model with R-symmetry

SO(2, C)× SO(2, C) allowing both an A-twist and a B-twist with the complexified Lorentz

group, which is also SO(2, C).

The main result of the paper concerns the Euclidean model with real action and real

WZ term. The analysis closely follows that of GHR, (Gates, Hull and Roček) [1] in the

Lorentzian case, i.e., we make an ansatz for the extra supersymmetries and find the con-

straints on the target space geometry that follow from closure of the algebra and invariance

of the action. We find a curious generalization of complex geometry, which has a complex

tensor J that satisfies J2 = −1 and has vanishing Nijenhuis tensor. By complex tensor,

we mean that it has components in a real coordinate system that are complex, whereas

for a complex structure, the components would be real. We briefly discuss the underly-

ing geometry.

We give the N = 2 superspace formulation for the case in which the supersymmetry

algebra closes off-shell. In this case, the target space geometry has a metric of indefinite

signature and two Yano f-structures [9].
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2 Sigma models

The two-dimensional nonlinear sigma model has the action

S = −1

4

∫

Σ

d2σ
√

h [hµν∂µφi∂νφ
jgij(φ) + ǫµν∂µφi∂νφjBij(φ)] , (2.1)

for maps {φ} from a two dimensional manifold Σ to a d-dimensional target space M :

φ : Σ → M . (2.2)

specified locally by functions φi(σ) giving the dependence of the real coordinates φi of M

on the real coordinates σµ of Σ. The target manifold M has a metric g and 2-form potential

B, while Σ has a metric hµν with h = |det(hµν)|. The potential B need only be locally

defined, but there is a globally-defined closed 3-form field strength H such that locally

H = dB. The equations of motion depend on B only through the 3-form field strength H

and so are well-defined.

In the usual case, the metric hµν has Lorentzian signature and gij(φ) and Bij(φ) have

real components. The Euclidean version of this used in the path integral (given by a Wick

rotation in the case in which hµν is flat) is

S = −1

4

∫

Σ

d2σ
√

h [hµν∂µφi∂νφ
jgij(φ) + iǫµν∂µφi∂νφ

jBij(φ)] , (2.3)

with hµν a Euclidean signature metric. Note that the term involving B is now pure imag-

inary, so that the action is complex. For both the Lorentzian and Wick-rotated case, the

quantum theory is well-defined if H is a globally-defined 3-form that represents an integral

cohomology class, H ∈ H3(Z). Geometrically this means that there is a gerbe with curva-

ture H and connection Bα in each coordinate patch Oα. For the path integral, if H2(M)

is non-trivial, it is not sufficient to specify H , and a choice of B must be made. Then the

term containing the B-field

e2πi
R

φ∗(B) (2.4)

defines the holonomy of a gerbe over the embedding of the world sheet. For further details

on gerbes and gerbe holonomy see [3, 6].

For Euclidean signature one can also consider the real action (2.1) with hµν a Euclidean

signature metric. For the action to be well-defined, B should be a globally-defined 2-form.

However, the field equations are well-defined provided only that H is a well-defined 3-form,

so that a classical theory exists for any closed 3-form H.

This paper will investigate the N = 2 supersymmetrisations of both the real ac-

tion (2.1) and the complex action (2.3) for Euclidean hµν . The motivation for this comes

from our investigation of topological twistings [5], where both cases played a role.

An N = 1 supersymmetric version of these sigma model are obtained by promoting

the φ’s to N = 1 superfields Φ(σ, θ) depending on fermionic coordinates θ±, where θ+ has

– 2 –
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positive chirality and θ− has negative chirality. In Lorentzian signature, θ± are independent

real Majorana-Weyl spinors, while in Euclidean signature they are complex conjugate Weyl

spinors, (θ+)∗ = θ−. The corresponding supercovariant spinor derivatives are D±; see [4, 5]

for further discussion of our conventions.

For both the Lorentzian sigma model with action (2.1) and Euclidean sigma model

with complex action (2.3), the supersymmetric action is (taking h to be flat)

S = −1

4

∫

d2σd2θ (D+ΦiEij(Φ)D−Φj) , (2.5)

where

Eij = gij + Bij , (2.6)

By contrast, for the Euclidean sigma model with real action (2.1), the N = 1 supersym-

metric version is again given by (2.5) but now

Eij = gij + iBij , (2.7)

is complex.

For special target space geometries, these N = 1 sigma models can have extra super-

symmetries. For example, the Lorentzian sigma model will have N = 2 supersymmetry

provided the target space has the bihermitean geometry of GHR [1], which has recently

been given a new formulation in terms of Generalized Kähler geometry [2, 7]. Here we

will examine the geometries needed for the real and Wick-rotated N = 1 Euclidean sigma

models to have N = 2 supersymmetry.

3 Geometry of the classical models

In this section we briefly review the geometric structure of the target spaces for the

Lorentzian and Wick-rotated models. We then present our main results that concern

the geometry for the Euclidean model with real action.

3.1 The Lorentzian N = 2 model

We start with the Lorentzian signature N = 1 supersymmetric action (2.5) with (2.6) and

follow the analysis of [1]. The general ansatz for an extra right and left supersymmetry is

δǫΦ
i = iJ+

i
j(ǫ−D+Φj) + iJ−

i
j(ǫ+D−Φj) , (3.1)

where ǫ± are independent real supersymmetry transformation parameters and J± are some

mixed real tensors on M . Closure of the supersymmetry algebra and invariance of the action

then impose conditions on J±. Closure requires that J± are complex structures,

J2
± = −1 , N (J±) = 0 , (3.2)

where N (J) denotes the Nijenhuis tensor. Invariance of the action requires that they are

also covariantly constant with respect to connections with torsion,

∇±J± = 0 , (3.3)

– 3 –
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and the metric g is hermitean with respect to both

J t
±gJ± = g . (3.4)

The connections with torsion are constructed from the Levi-Civita connection Γ and the

3-form H = dB:

Γ± = Γ ± 1

2
g−1H . (3.5)

Then M has a GHR bihermitian geometry [1].

3.2 The Wick rotated N = 2 model

Consider next the ‘Wick-rotated’ model given by N = 1 supersymmetric action (2.5)

with (2.6) and Euclidean world-sheet metric, so that the component expansion has bosonic

part (2.3) with imaginary WZ term. The anasatz for the extra supersymmetry is again (3.1)

but now all spinors are complex, with

(ǫ±)∗ = ǫ∓ , (D±)∗ = D∓ . (3.6)

The algebra of the supercovariant derivatives is

{D+,D+} = ∂ ,

{D−,D−} = ∂̄ , (3.7)

where the partial derivatives on the right are derivatives with respect to z = σ1 + iσ2 and

z̄ = σ1− iσ2 respectively. Closure of the algebra and invariance of the action give the same

set of equations (3.2)–(3.5) as for the Lorentzian case. However, the reality conditions on

Φ and the transformations (3.1) give us the condition

J∗
+ = J− . (3.8)

The complex conjugate of (3.3) now yields

∇±J∓ = 0 , (3.9)

which together with (3.3) implies the Kähler equation,

∇J± = 0 , (3.10)

and

H = 0 . (3.11)

Indeed this should not come as surprise. The Wick-rotated action is complex and so the real

and imaginary parts must be separately invariant, so that the geometry must be Kähler and

the WZ term trivial. Then B is a connection on a flat gerbe and the expression e2πi
R

φ∗(B)

is well-defined and gives us the holonomy of the flat gerbe.

– 4 –
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3.3 The Euclidean N = 2 model with real action

We now consider the action (2.5) with Euclidean world-sheet and

Eij = gij + iBij , (3.12)

so that the component expansion has the bosonic term (2.1) with real B-field term. The

anasatz for the extra supersymmetry is again (3.1) but now all spinors are complex, with

the reality conditions on Φ and the transformations (3.1) again giving J∗
+ = J−. Then the

second supersymmetry variation (3.1) becomes

δǫΦ
i = iJ i

j(ǫ−D+Φj) + iJ∗i
j(ǫ+D−Φj) , (3.13)

where J∗ is the complex conjugate to J = J+. Alternatively we can split J into real and

imaginary parts

J = f + if̃ , (3.14)

where f and f̃ are real tensors, so that the transformation (3.13) becomes

δǫΦ
i = if i

j(ǫ−D+ + ǫ+D−)Φj + f̃ i
j(ǫ+D− − ǫ−D+)Φj . (3.15)

The conditions for supersymmetry following [1] are similar to before, but with extra

factors of i. The on-shell closure of the supersymmetry algebra implies that

J2 = −1

and its Nijenhuis tensor vanishes, N (J) = 0. Invariance of the action under the second

supersymmetry (3.1) requires the metric g must satisfy

J tgJ = g (3.16)

together with

∇HJ = 0 , (3.17)

where ∇H has connection

ΓH = Γ +
i

2
g−1H .

Thus formally our new conditions are similar to the generalized Kähler geometry, but now

J+ = J , J− = J∗ are complex tensors and the torsion term in the connection now has a

factor of i. Thus the conditions are formally similar to those for generalized Kähler geom-

etry, but the different reality properties and extra factors of i means that the implications

of these conditions will be quite different.

The target manifold M is not a complex manifold in the standard sense. We still can

define the projectors

p± =
1

2
(1 ± iJ) , p∗± =

1

2
(1 ∓ iJ∗) , (3.18)
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which would give us four integrable complex distributions on the complexified tangent

bundle TMC. However we would not be able to define the decomposition of a vector into

holomorphic and antiholomorphic parts. For example, the projector p− would define the

”holomorphic” vectors T (1,0)M , but unlike the complex manifold we have now

T (1,0)M ∩ T (0,1)M 6= ∅ , (3.19)

where T (0,1)M is the subbundle complex conjugate to T (1,0)M .

Using the real and imaginary parts of J introduced in (3.14) the condition J2 = −1

becomes

f2 − f̃2 = −1 ,

{f, f̃} = 0 . (3.20)

In terms of real tensors, the condition (3.17) can be written as two real equations,

∇f =
1

2
g−1Hf̃ ,

∇f̃ = −1

2
g−1Hf . (3.21)

Furthermore, as in the generalized Kähler case [8] we can define two real Poisson structures

π+ =
1

2
(J + J∗)g−1 = fg−1 , (3.22)

π− =
1

2i
(J − J∗)g−1 = f̃g−1 , (3.23)

which define symplectic foliations. Locally we can choose the coordinates adapted to these

foliations and f , f̃ look relatively simple in those coordinates.

3.4 Off-shell closure and f-structures

The N = 2 superalgebra will close off-shell only if J and J∗ commute.1 In this case the

condition [J, J∗] = 0 becomes

f f̃ = 0 . (3.24)

Then at least one of the two structures f, f̃ must be degenerate. Then f and f̃ satisfy

f3 + f = 0 , (3.25)

f̃3 − f̃ = 0 . (3.26)

Equation (3.25) is the generalization of an almost complex structure condition (f2 = −1)

to allow the possibility of f being a degenerate tensor. A tensor f of constant rank

satisfying (3.25) is a Yano f-structure [9]. Similarly, equation (3.26) is the generalization

of an almost product structure (f̃2 = 1) condition with f̃ being possibly degenerate and

gives a generalised f-structure.

1If auxiliary fields are included, the situation changes. See [7].
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Let

P = −f2 . (3.27)

Then

P 2 = P , (3.28)

so that P is a projector. At a point, if the rank of P is r, then we can choose a basis in

which P has a block form

P =

[

0

1I

]

, (3.29)

where 1I is the r × r unit matrix and 0 is the (D − r) × (D − r) zero matrix. Then

f =

[

0

j

]

, (3.30)

where j is an r × r non -degenerate matrix satisfying

j2 = −1I .

This implies that r is even, r = 2q, and one can choose a basis so that

j =

(

0 1I

−1I 0

)

. (3.31)

Next, since f f̃ = 0, f̃ has the block form

f̃ =

[

π

0

]

, (3.32)

where π is a (D − r) × (D − r) matrix satisfying

π3 − π = 0 .

Then π has eigenvalues ±1, 0 and take the form






1I 0 0

0 −1I 0

0 0 0






(3.33)

split into blocks of dimension a, b, c with a + b + c + r = D. If the number c of zero

eigenvalues is non-zero, then there will be a subspace on which the 2nd supersymmetry

does not act. If it is non-degenerate, then

π2 = 1I

and we will mostly be interested in this non-degenerate case.

Finally

J =

[

iπ 0

0 j

]

. (3.34)
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The vanishing of the Nijenhuis tensor for J implies that we can choose coordinates so that

J takes this form on a patch.

As in Lorentzian signature [1], we can (for non-degenerate π) define a local product

structure defined by a real tensor Π,

Π = JJ∗ (3.35)

satisfying

Π2 = 1I ,

which takes the form

Π =

[

1I 0

0 −1I

]

(3.36)

and this local product structure Π is integrable.

We will see in the next section that N = 2 superspace naturally gives geometries with

a = b = p, c = 0 and which admit a local description in terms of single real function, very

much in analogy with the Kähler and generalized Kähler cases.

3.5 The Euclidean N = 2 model with real action in N = 2 superspace

The N = 1-supersymmetric action (2.5) with an extra supersymmetry (3.1) that closes

off-shell2 can be reformulated in Euclidean N = 2 superspace:

S = 2

∫

d2z d2θ d2θ̄ K(φ, φ̄, χ, χ̃) . (3.37)

We remind the reader that in Euclidean signature, the conjugation relations for N = 2

spinor derivatives are

(D±)† = D̄∓ . (3.38)

In (3.37) φu u = 1, ..., p are chiral superfields (D̄+φ = D̄−φ = 0) and φ̄u their complex

conjugates (D+φ̄ = D−φ̄ = 0). The fields χa are mixed chiral fields satisfying

D̄+χ = D−χ = 0

where a = 1, ..., q. In Euclidean signature its complex conjugated field χ̄ is still a mixed

chiral field, as

D̄+χ̄ = D−χ̄ = 0 (3.39)

so there is no loss of generality in taking the fields χa to be real. The fields χ̃a are real

mixed anti-chiral fields satisfying

D+χ̃ = D̄−χ̃ = 0 . (3.40)

2In Lorentzian signature, a complete description covering all off-shell cases requires additional N = (2, 2)

semi-chiral fields.

– 8 –
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We write the action in terms of q real mixed chiral fields χa and an equal number3 of real

mixed anti-chiral fields χ̃a. This structure of the potential K was first introduced and

discussed in [4].

We now relate this to the action in section 3.3. Note that the bosonic part of the

action is (2.1), which can be written using complex world-sheet coordinates z, z̄ as

S = −
∫

Σ

d2z(gij∂φi∂̄φj − iBij∂φi∂̄φj) . (3.41)

We write the action (3.37) as

S =

∫

d2z(D−D̄−D+D̄+ + D̄−D−D̄+D+)K(φ, φ̄, χ, χ̃)
∣

∣

∣ , (3.42)

where (..)
∣

∣

∣
denotes taking the θ = 0 part. The bosonic part of the action then becomes

S =

∫

d2z
(

− K,ūv ∂φv∂̄φ̄u − K,uv̄ ∂φ̄v ∂̄φu

+ K,ãb ∂χb∂̄χ̃a + K,
ab̃

∂χ̃b∂̄χa

+ K,uv̄ ∂φ̄v∂̄φu − K,ūv ∂φv ∂̄φ̄u

+ K,ua ∂χa∂̄φu − K,au ∂φu∂̄χa

+ K,aū ∂φ̄u∂̄χa − K,ūa ∂χa∂̄φ̄u
)

.

(3.43)

Comparing the actions (3.41) and (3.43), we learn about the geometry of the target

space manifold. The metric g has a block diagonal structure,

g =











0 K,uv̄

K,ūv 0

0 −K,ab̃

−K,ãb 0











, (3.44)

where we have a block with 2p × 2p entries for the chiral sector and a block of 2q × 2q for

the mixed chiral sector. The chiral sector block of dimension 2p has Euclidean signature

while the mixed chiral sector block of dimension 2q has a metric of split signature (q, q)

with q positive eigenvalues and q negative ones.

The 2-form B has off-diagonal blocks mixing chiral with mixed chiral derivatives plus

an extra bloc for the chiral sector,

B =











0 −iK,uv̄ −iK,ua 0

iK,ūv 0 iK,ūa 0

iK,au −iK,aū

0 0











. (3.45)

It has a different form from that in the standard GHR-gauge [1], which gives a B-field that

is complex in Euclidean signature. Here we use an alternative gauge in which B is real

when written in real coordinates.
3A different number of mixed chiral and mixed anti-chiral fields leads to degenerate models.
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We now turn to the structures J and J∗ that appear in the supersymmetry trans-

formations (3.13), following [1]. The N = 2 superspace formulation makes the extra

supersymmetry manifest. Expanding into N = 1 superfields gives transformations of the

form (3.13) and from these one can read off the structures J and J∗, which are constant in

this coordinate system. We define the Weyl N = 1 spinor derivative D±, and the generator

of the non-manifest supersymmetry Q±,

D± =
1√
2
(D± + D̄±) , (3.46)

Q± =
i√
2
(D± − D̄±) .

The N = 1 algebra with the property (3.6) and {D±, Q±} = 0 follow from the N = 2

algebra and the property (3.38). The Q-transformations of the N = 1 fields (φ, φ̄, χ, χ̃) are

δǫφ
u = iǫ−Q+φu + iǫ+Q−φu

= −ǫ−D+φu − ǫ+D−φu ,

δǫφ̄
u = ǫ−D+φ̄u + ǫ+D−φ̄u , (3.47)

δǫχ
a = −ǫ−D+χa + ǫ+D−χa ,

δǫχ̃
a = ǫ−D+χ̃a − ǫ+D−χ̃a .

To relate this to the structure that we found for J in the previous section we need to

expand the real N = 1 superfield Φ in real components, so we need to split the N = 2

chiral superfield φ and its antichiral partner φ̄ into their real components,

φ = φ1 + iφ2 ,

φ̄ = φ1 − iφ2 .

Writing the N = 1 superfields Φ in terms of the real N = 1 superfields (χ, χ̃, φ1, φ2), we

can read off the J in transformation (3.13) to be

J =











i 0

0 −i

0 −1

1 0











. (3.48)

We thus recover the structures discussed in the previous subsection, cf. (3.34)–(3.36).

4 Conclusions

As discussed, e.g., in [4, 10, 11], Euclidean supersymmetry differs in many ways from the

usual Lorentzian one. In this article this is again illustrated by considering the target

space geometry of a “natural” sigma model in Euclidean signature. We encountered the

modification of the complex geometry defined by the complex tensor J which formally

satisfies the usual definitions of complex structure, but is now a complex tensor. We

considered in detail the geometry that emerges from off-shell supersymmetry which differers
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from the usual case both in the signature of the metric and in the additional structure it

carries. The geometry is described by (M,g,B, f, f̃ ) where f and f̃ are Yano f-structures

when the superymmetry algebra closes off-shell. This structure is derived from a potential

as in the Lorentzian case. The field equations are well-defined provided only that H

is globally defined, but the quantum theory requires further that H represent a trivial

cohomology class. It is only the special case of a Kähler manifold as target space that can

be described by N = 2-supersymmetric models of all three kinds discussed here.
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